Codes Improvement

Ridi Ferdiana
ridi@acm.org
Version 1.0.0




Code is Codes is

updated designed
Code is Codes is
refactored written
Code is
tested and

fixed



: Refactoring

@ Refactoring is about improving the codes

Refactoring means "to
improve the design
and quality of existing
source code without
changing its external
behavior”.

Martin Fowler




@ Code constantly changes
and its quality
constantly degrades
(unless refactored)

@ Requirements often
change and code needs
to be changed to follow
them




" When to Refactor

@ Bad small
codes

@ After fixing
the bugs

@ Reviewing
others codes

@ Test Driven
Development

) v [I_ j — | h_ "J_I.:__L T .. E‘_.-:I I_“L
O oCAE UA L 1T\ -'r_‘h';f T
4
», e

LT

GGG& Cocke.

WTF = ‘What The Funny’ Codes
SHIT = ‘So Heavy in Test”




in.Principles

Avoid duplication (DRY)

Simplicity - Keep it simple smart (KISS)

Make it expressive (self-documenting, comments)
Reduce overall code (YAGNI)

More code = more bugs

Avoid premature optimization

Appropriate level of abstraction

Hide implementation details

e © ©€ © © © ¢© ¢

.\wgg little bugs in the code.
r ¥" 99 little bugs in the code.
/ ¥ Take one down, patch it around.

N 2 ':
' " 127 little bugs in the code...




" Refactoring Process



Code Smells : IThe Bloaters

@ Long method
@ Large class
@ Primitive obsession (overused primitives)
@ Qver-use of primitives, instead of better abstraction
@ Long parameter list (in/out/ref parameters)
@ Data clumps
“ A set of data items that are always used together

@ Combinatorial explosion

@ ListCars, ListByRegion, ListByManufacturer,
ListByManufacturerAndRegion




Code Smells : The Bloaters

@ (QOddball solution

@ Adifferent way of solving a common problem
“ Not using consistency
@ Solution: Substitute algorithm or use adapter

@ (lass doesn't do much
@ Solution: Merge with another class or remove

@ Required setup/teardown code
@ Requires several lines of code before its use
@ Solution: Use parameter object, factory method, IDisposable



Code Smells: Obfuscator

@ Poor/improper names
@ Should be proper, descriptive and consistent
@ Vertical separation

“ You should define variables just before first
use

@ |nconsistency
@ Inconsistency is confusing and distracting

® Obscured intent
@ Code should be as expressive as possible



@ Switch statement

@ Can be replaced with polymorphism
@ Temporary field

©® When passing data between methods

@ Class depends on subclass

@ The classes cannot be separated (circular
dependency)

“@ May broke Liskov substitution principle

® Inappropriate static
@ Strong coupling between static and callers
@ Static things cannot be replaced or reused



Code Smells: Change Preventers

@ Divergent change

@ A class is commonly changed in different ways
for different reasons

@ Shotgun surgery
“ One change requires changes in many classes
@ Conditional complexity

@ Symptoms: deep nesting (arrow code) & bug
ifs — S

End-If

oPluginsProceeded. Add(LCase(sFile))
EEEEE




Code Smells: Dispensables

@ Lazy Class

@ (Classes that don't do enough to justify their existence
should be removed

@ Data class

@ Some classes with only fields and properties
@ Missing validation? Class logic split into other classes?

@ Duplicated codes
@ Dead Codes

@ Speculative Codes
@ "Some day we might need...”



Code Smells:

@ Inappropriate intimacy

¥ Method that seems more interested in a class other
than the one it actually is in

@ Feature envy
@ (Classes that know too much about one another

@ Indecent exposure
@ Some classes or members are public but shouldn't be

@ The Law of Demeter (LoD

@ Least knowledge Bad e.g.:
customer.Wallet.RemoveMoney()



Refactoring

Data Statement Method
Level Level Level
Class Interface Solution
Level Level Level




Demo

Refactoring

Using IDE to do refactoring




| Refact. INg

@ Large repeating code fragments - extract
repeating code in separate method

@ Large methods - split them logically

@ Large loop body or deep nesting - extract
method

@ Class or method has weak cohesion - split
into several classes / methods



@ Single change carry out changes in several
classes - classes have tight coupling -
consider redesign

@ Related data are always used together but
are not part of a single class = group them
in a class

@® A method has too many parameters -
create a class to groups parameters
together

@ A method calls more methods from another
class than from its own class =2 move it



Two classes are tightly coupled - merge them or
redesign them to separate their responsibilities

Public non-constant fields - make them private
and define accessing properties

Magic numbers in the code - consider extracting
constants

Bad named class / method / variable - rename
it

Complex boolean condition - split it to several
expressions or method calls



Few classes share repeating functionality -
extract base class and reuse the common code

Different classes need to be instantiated
depending on configuration setting - use factory

@ Code is not well formatted - reformat it

Too many classes in a single namespace > split
classes logically into more namespaces

@ Unused using definitions - remove them
@ Non-descriptive error messages > improve them



® The Code Lifecycles
@ Common Code reviews

@ Testing
“ Debugging
@ Static Analytics
@ Refactoring as a remedy to improve the
code quality by doing static analytics
@ Code Smells as indicator to do refactoring

@ Refactoring Patterns is ready to use recipes
for developer



@ Kent Beck; Martin Fowler; John Brant; Don
Roberts; William Opdyke. Refactoring:
Improving the Desigh of Existing Code.
Addison-Wesley Professional, 1999

@ Svetlin Nakov;Nikolay Kostov. Refactoring:
Improving the Quality of Existing Code.
Telerik Academy. 2007.



