
Ridi Ferdiana
ridi@acm.org
Version 1.0.0



The Codes Lifecycle

Codes is
designed

Codes is
written

Code is
tested and

fixed

Code is
refactored

Code is
updated



Refactoring

Refactoring is about improving the codes

Refactoring means "to
improve the design
and quality of existing
source code without
changing its external
behavior".

Martin Fowler



Why Codes Refactoring

Code constantly changes
and its quality
constantly degrades
(unless refactored)
Requirements often
change and code needs
to be changed to follow
them



When to Refactor

Bad small
codes
After fixing
the bugs
Reviewing
others codes
Test Driven
Development

WTF = ‘What The Funny’ Codes
SHIT = ‘So Heavy in Test”



Good Codes Main Principles

Avoid duplication (DRY)
Simplicity – Keep it simple smart (KISS)
Make it expressive (self-documenting, comments)
Reduce overall code (YAGNI)
More code = more bugs
Avoid premature optimization
Appropriate level of abstraction
Hide implementation details



Refactoring Process

Save the
codes

Test the
codes

Refactoring
on at a time

Run unit
test

Check-in



Code Smells : The Bloaters

Long method
Large class
Primitive obsession (overused primitives)

Over-use of primitives, instead of better abstraction

Long parameter list (in/out/ref parameters)
Data clumps

A set of data items that are always used together

Combinatorial explosion
ListCars, ListByRegion, ListByManufacturer,
ListByManufacturerAndRegion



Code Smells : The Bloaters

Oddball solution
A different way of solving a common problem
Not using consistency
Solution: Substitute algorithm or use adapter

Class doesn't do much
Solution: Merge with another class or remove

Required setup/teardown code
Requires several lines of code before its use
Solution: Use parameter object, factory method, IDisposable



Code Smells: Obfuscator
Poor/improper names

Should be proper, descriptive and consistent

Vertical separation
You should define variables just before first
use

Inconsistency
Inconsistency is confusing and distracting

Obscured intent
Code should be as expressive as possible



Code Smells: OO Abusers
Switch statement

Can be replaced with polymorphism
Temporary field

When passing data between methods
Class depends on subclass

The classes cannot be separated (circular
dependency)
May broke Liskov substitution principle

Inappropriate static
Strong coupling between static and callers
Static things cannot be replaced or reused



Code Smells: Change Preventers
Divergent change

A class is commonly changed in different ways
for different reasons

Shotgun surgery
One change requires changes in many classes

Conditional complexity
Symptoms: deep nesting (arrow code) & bug
ifs



Code Smells: Dispensables

Lazy Class
Classes that don't do enough to justify their existence
should be removed

Data class
Some classes with only fields and properties
Missing validation? Class logic split into other classes?

Duplicated codes
Dead Codes
Speculative Codes

"Some day we might need…"



Code Smells: Couplers

Inappropriate intimacy
Method that seems more interested in a class other
than the one it actually is in

Feature envy
Classes that know too much about one another

Indecent exposure
Some classes or members are public but shouldn't be

The Law of Demeter (LoD
Least knowledge Bad e.g.:
customer.Wallet.RemoveMoney()



Refactoring Types

Data
Level

Statement
Level

Method
Level

Class
Level

Interface
Level

Solution
Level



Using IDE to do refactoring



Refactoring Patterns

Large repeating code fragments  extract
repeating code in separate method

Large methods  split them logically

Large loop body or deep nesting  extract
method
Class or method has weak cohesion  split
into several classes / methods



Refactoring Patterns
Single change carry out changes in several
classes  classes have tight coupling 
consider redesign
Related data are always used together but
are not part of a single class  group them
in a class
A method has too many parameters 
create a class to groups parameters
together
A method calls more methods from another
class than from its own class  move it



Refactoring Patterns
Two classes are tightly coupled  merge them or
redesign them to separate their responsibilities
Public non-constant fields  make them private
and define accessing properties
Magic numbers in the code  consider extracting
constants
Bad named class / method / variable  rename
it
Complex boolean condition  split it to several
expressions or method calls



Refactoring Patterns
Few classes share repeating functionality 
extract base class and reuse the common code
Different classes need to be instantiated
depending on configuration setting  use factory
Code is not well formatted  reformat it
Too many classes in a single namespace  split
classes logically into more namespaces
Unused using definitions  remove them
Non-descriptive error messages  improve them



Key Points

The Code Lifecycles
Common Code reviews

Testing
Debugging
Static Analytics

Refactoring as a remedy to improve the
code quality by doing static analytics
Code Smells as indicator to do refactoring
Refactoring Patterns is ready to use recipes
for developer



References

Kent Beck; Martin Fowler; John Brant; Don
Roberts; William Opdyke. Refactoring:
Improving the Design of Existing Code.
Addison-Wesley Professional, 1999
Svetlin Nakov;Nikolay Kostov. Refactoring:
Improving the Quality of Existing Code.
Telerik Academy. 2007.


