
Ridi Ferdiana
ridi@acm.org
Version 1.0.0



DevOps Concept

Developer & Operation: Integrating the
development with daily operation.
DevOps is more about culture and
processes than it is about organization



Why DevOps

Making sure the
development is
productive on

the organization

Making an effort
to improve the

quality of
software by

integrating it
with operation



How to implement the DevOps

Alignment between operation and
developer activity

Empowering the team with
communication and collaboration tools

Maesuring the effectiveness by doing
continuous tracking



Alignment model

Engaging the Business
Side

• The development should
consider the business
impact

• The business should see
opportunity to improve
by the development

• Both team agrees to
understand the work
load on the organization

Sharing Information

• Sharing the status of the
development with clear
and continuous
feedback

• Frequent release to
improve business
visibility



Empowering The Team

Collaboration workspace
Offline
Online

Repository
Requirements (Files)
Source Codes & Binary

Tracking
Tracking changes
Tracking bugs
Tracking Release



Collaboration Workspace

Mailing List (Email)
Group Chat / VOIP (IM)
Team Forum



Creating Collaboration Workspace



Repository

Software Repository
Source Codes Repository
Binary / Production Repository

Artifacts Repository
Developers log book
Requirements files
Design files
Backup



Setup Repository on The Cloud



Tracking

Tracking the software
progress

Continous Build
Tracking

Tracking the software
quality

Test plan tracking
Tracking the software
project status

Dashboard etc



How Dashboard and Chart Help team
decision



Measuring Development Productivity

Project management KPI

Architecture, analysis, and design KPI

Developer practices KPI

Software testing KPI

Release management KPI



Project Management metrics

Backlog
overview

Sprint
burndown

Velocity
report

Release
burndown

Remaining
work

Unplanned
work



Architecture & Design

Lines of code: This is an approximate number based on
Intermediate Language (IL) code.

Class coupling: Measures the coupling to unique classes
through parameters

Depth of inheritance: Indicates the number of class
definitions that extend to the root

Cyclomatic complexity: Determined by calculating the
number of different code paths

Maintainability index: An index value between 0 and 100 that
represents the relative ease of maintaining the code



Developer Practices

Code coverage

Code
metrics

Compiler
warnings

Code-
analysis
warnings



Software Testing KPI

Number of bugs per state: How many bugs are active, resolved, or closed? Is the number of
active bugs increasing and the number of resolved and closed bugs constant? If so, you need to
look into how you perform your testing.

Number of bugs sent back from testers for more information (a.k.a reactivated bugs): A large
number may indicate that communication between developers and testers must improve.

Code coverage: This shows how much of the code has been covered by automated unit tests.
You get the value as a percentage of the entire codebase.

Tests run results: How are your tests performing? Do you have many failed tests? If so, what
can you do to improve this?

Percent requirements covered by test cases: Do you write test cases for all your requirements?
If not, what is the reason?

Percent requirements covered by testing: Do you actually run the tests for which you have test



Release Management KPI

Number of software defects in production (the
number of bugs or software defects of

applications [versions] that are in production

Percentage of successful software upgrades
(excludes full installations)

Number of untested releases (not tested and
signed off)

Number of urgent releases

Average costs of release, where costs most
likely are based on man-hours spent



Key points

DevOps as a model to improve productivity
on management and development
DevOps

Alignment
Empowering
Measuring



References

Ridi Ferdiana. 2014. Application Lifecycle
Management Course Module. MCT Module
Joachim Rossberg. 2014. Beginning
Application Lifecycle Management. Apress


